General Relativity and Quantum Cosmology
[Submitted on 8 May 2009]
Title:Parameter estimation for signals from compact binary inspirals injected into LIGO data
View PDFAbstract: During the fifth science run of the Laser Interferometer Gravitational-wave Observatory (LIGO), signals modelling the gravitational waves emitted by coalescing non-spinning compact-object binaries were injected into the LIGO data stream. We analysed the data segments into which such injections were made using a Bayesian approach, implemented as a Markov-chain Monte-Carlo technique in our code SPINspiral. This technique enables us to determine the physical parameters of such a binary inspiral, including masses and spin, following a possible detection trigger. For the first time, we publish the results of a realistic parameter-estimation analysis of waveforms embedded in real detector noise. We used both spinning and non-spinning waveform templates for the data analysis and demonstrate that the intrinsic source parameters can be estimated with an accuracy of better than 1-3% in the chirp mass and 0.02-0.05 (8-20%) in the symmetric mass ratio if non-spinning waveforms are used. We also find a bias between the injected and recovered parameters, and attribute it to the difference in the post-Newtonian orders of the waveforms used for injection and analysis.
Current browse context:
gr-qc
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.