Mathematics > Analysis of PDEs
[Submitted on 15 Jun 2010 (v1), last revised 17 Jun 2010 (this version, v2)]
Title:Profile decompositions for critical Lebesgue and Besov space embeddings
View PDFAbstract:Profile decompositions for "critical" Sobolev-type embeddings are established, allowing one to regain some compactness despite the non-compact nature of the embeddings. Such decompositions have wide applications to the regularity theory of nonlinear partial differential equations, and have typically been established for spaces with Hilbert structure. Following the method of S. Jaffard, we treat settings of spaces with only Banach structure by use of wavelet bases. This has particular applications to the regularity theory of the Navier-Stokes equations, where many natural settings are non-Hilbertian.
Submission history
From: Gabriel Koch [view email][v1] Tue, 15 Jun 2010 19:50:17 UTC (22 KB)
[v2] Thu, 17 Jun 2010 10:15:11 UTC (22 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.