Mathematics > Quantum Algebra
[Submitted on 25 Jul 2010 (v1), last revised 4 Dec 2010 (this version, v3)]
Title:Quantum folding
View PDFAbstract:In the present paper we introduce a quantum analogue of the classical folding of a simply-laced Lie algebra g to the non-simply-laced algebra g^sigma along a Dynkin diagram automorphism sigma of g For each quantum folding we replace g^sigma by its Langlands dual g^sigma^v and construct a nilpotent Lie algebra n which interpolates between the nilpotnent parts of g and (g^sigma)^v, together with its quantized enveloping algebra U_q(n) and a Poisson structure on S(n). Remarkably, for the pair (g, (g^sigma)^v)=(so_{2n+2},sp_{2n}), the algebra U_q(n) admits an action of the Artin braid group Br_n and contains a new algebra of quantum n x n matrices with an adjoint action of U_q(sl_n), which generalizes the algebras constructed by K. Goodearl and M. Yakimov in [12]. The hardest case of quantum folding is, quite expectably, the pair (so_8,G_2) for which the PBW presentation of U_q(n) and the corresponding Poisson bracket on S(n) contain more than 700 terms each.
Submission history
From: Jacob Greenstein [view email][v1] Sun, 25 Jul 2010 22:57:24 UTC (46 KB)
[v2] Fri, 30 Jul 2010 22:06:44 UTC (46 KB)
[v3] Sat, 4 Dec 2010 16:48:44 UTC (46 KB)
Current browse context:
math.QA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.