Mathematics > Quantum Algebra
[Submitted on 26 Jul 2010 (v1), last revised 11 Jun 2011 (this version, v3)]
Title:Noncommutative Poisson brackets on Loday algebras and related deformation quantization
View PDFAbstract:Given a Lie algebra, there uniquely exists a Poisson algebra which is called a Lie-Poisson algebra over the Lie algebra. We will prove that given a Loday/Leibniz algebra there exists uniquely a noncommutative Poisson algebra over the Loday algebra. The noncommutative Poisson algebras are called the Loday-Poisson algebras. In the super/graded cases, the Loday-Poisson bracket is regarded as a noncommutative version of classical (linear) Schouten-Nijenhuis bracket. It will be shown that the Loday-Poisson algebras form a special subclass of Aguiar's dual-prePoisson algebras. We also study a problem of deformation quantization over the Loday-Poisson algebra. It will be shown that the polynomial Loday-Poisson algebra is deformation quantizable and that the associated quantum algebra is Loday's associative dialgebra.
Submission history
From: Kyousuke Uchino [view email][v1] Mon, 26 Jul 2010 16:39:21 UTC (12 KB)
[v2] Thu, 12 Aug 2010 02:14:38 UTC (12 KB)
[v3] Sat, 11 Jun 2011 15:42:43 UTC (12 KB)
Current browse context:
math.QA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.