Condensed Matter > Statistical Mechanics
[Submitted on 8 Sep 2010 (v1), last revised 19 Nov 2010 (this version, v2)]
Title:Reformulation of the Covering and Quantizer Problems as Ground States of Interacting Particles
View PDFAbstract:We reformulate the covering and quantizer problems as the determination of the ground states of interacting particles in $\mathbb{R}^d$ that generally involve single-body, two-body, three-body, and higher-body interactions. This is done by linking the covering and quantizer problems to certain optimization problems involving the "void" nearest-neighbor functions that arise in the theory of random media and statistical mechanics. These reformulations, which again exemplifies the deep interplay between geometry and physics, allow one now to employ theoretical and numerical optimization techniques to analyze and solve these energy minimization problems. The covering and quantizer problems have relevance in numerous applications, including wireless communication network layouts, the search of high-dimensional data parameter spaces, stereotactic radiation therapy, data compression, digital communications, meshing of space for numerical analysis, and coding and cryptography, among other examples. The connections between the covering and quantizer problems and the sphere-packing and number-variance problems are discussed. We also show that disordered saturated sphere packings provide relatively thin (economical) coverings and may yield thinner coverings than the best known lattice coverings in sufficiently large dimensions. In the case of the quantizer problem, we derive improved upper bounds on the quantizer error using sphere-packing solutions, which are generally substantially sharper than an existing upper bound in low to moderately large dimensions. We also demonstrate that disordered saturated sphere packings yield relatively good quantizers. Finally, we remark on possible applications of our results for the detection of gravitational waves.
Submission history
From: Salvatore Torquato [view email][v1] Wed, 8 Sep 2010 02:37:55 UTC (254 KB)
[v2] Fri, 19 Nov 2010 15:21:56 UTC (256 KB)
Current browse context:
cond-mat.stat-mech
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.