Computer Science > Computers and Society
[Submitted on 1 Oct 2010]
Title:Using Stochastic Models to Describe and Predict Social Dynamics of Web Users
View PDFAbstract:Popularity of content in social media is unequally distributed, with some items receiving a disproportionate share of attention from users. Predicting which newly-submitted items will become popular is critically important for both hosts of social media content and its consumers. Accurate and timely prediction would enable hosts to maximize revenue through differential pricing for access to content or ad placement. Prediction would also give consumers an important tool for filtering the ever-growing amount of content. Predicting popularity of content in social media, however, is challenging due to the complex interactions between content quality and how the social media site chooses to highlight content. Moreover, most social media sites also selectively present content that has been highly rated by similar users, whose similarity is indicated implicitly by their behavior or explicitly by links in a social network. While these factors make it difficult to predict popularity \emph{a priori}, we show that stochastic models of user behavior on these sites allows predicting popularity based on early user reactions to new content. By incorporating the various mechanisms through which web sites display content, such models improve on predictions based on simply extrapolating from the early votes. Using data from one such site, the news aggregator Digg, we show how a stochastic model of user behavior distinguishes the effect of the increased visibility due to the network from how interested users are in the content. We find a wide range of interest, identifying stories primarily of interest to users in the network (``niche interests'') from those of more general interest to the user community. This distinction is useful for predicting a story's eventual popularity from users' early reactions to the story.
Current browse context:
cs.CY
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.