High Energy Physics - Theory
[Submitted on 24 Jan 2011 (v1), last revised 2 Mar 2011 (this version, v2)]
Title:Magnetic Monopole in Noncommutative Space-Time and Wu-Yang Singularity-Free Gauge Transformations
View PDFAbstract:We investigate the validity of the Dirac Quantization Condition (DQC) for magnetic monopoles in noncommutative space-time. We use an approach which is based on an extension of the method introduced by Wu and Yang. To study the effects of noncommutativity of space-time, we consider the gauge transformations of $U_\star(1)$ gauge fields and use the corresponding deformed Maxwell's equations. Using a perturbation expansion in the noncommutativity parameter $\theta$, we show that the DQC remains unmodified up to the first order in the expansion parameter. The result is obtained for a class of noncommutative source terms, which reduce to the Dirac delta function in the commutative limit.
Submission history
From: Tapio Salminen [view email][v1] Mon, 24 Jan 2011 14:17:57 UTC (15 KB)
[v2] Wed, 2 Mar 2011 10:59:48 UTC (16 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.