Quantitative Finance > Pricing of Securities
[Submitted on 13 Jun 2011]
Title:Calibration of Chaotic Models for Interest Rates
View PDFAbstract:In this paper we calibrate chaotic models for interest rates to market data using a polynomial-exponential parametrization for the chaos coefficients. We identify a subclass of one-variable models that allow us to introduce complexity from higher order chaos in a controlled way while retaining considerable analytic tractability. In particular we derive explicit expressions for bond and option prices in a one-variable third chaos model in terms of elementary combinations of normal density and cumulative distribution functions. We then compare the calibration performance of chaos models with that of well-known benchmark models. For term structure calibration we find that chaos models are comparable to the Svensson model, with the advantage of guaranteed positivity and consistency with a dynamic stochastic evolution of interest rates. For calibration to option data, chaos models outperform the Hull and White and rational lognormal models and are comparable to LIBOR market models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.