High Energy Physics - Theory
[Submitted on 2 Nov 2011 (v1), last revised 2 Mar 2012 (this version, v4)]
Title:Extended supersymmetry of the self-isospectral crystalline and soliton chains
View PDFAbstract:We study supersymmetric structure of the self-isospectral crystalline chains formed by N copies of the mutually displaced one-gap Lame systems. It is generated by the N(N-1) integrals of motion which are the first order matrix differential operators, by the same number of the nontrivial second order integrals, and by the N third order Lax integrals. We show that the structure admits distinct alternatives for a grading operator, and in dependence on its choice one of the third order matrix integrals plays either the role of the bosonic central charge or the role of the fermionic supercharge to be a square root of the spectral polynomial. Yet another peculiarity is that the set of all the second order integrals of motion generates a nonlinear sub-superalgebra. We also investigate the associated self-isospectral soliton chains, and discuss possible physical applications of the unusual extended supersymmetry.
Submission history
From: Mikhail Plyushchay [view email][v1] Wed, 2 Nov 2011 18:40:13 UTC (274 KB)
[v2] Sun, 6 Nov 2011 22:49:26 UTC (274 KB)
[v3] Fri, 20 Jan 2012 01:48:34 UTC (276 KB)
[v4] Fri, 2 Mar 2012 00:21:22 UTC (277 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.