Mathematics > Commutative Algebra
[Submitted on 17 Jan 2013 (v1), last revised 14 Dec 2013 (this version, v2)]
Title:Algebra retracts and Stanley-Reisner rings
View PDFAbstract:In a paper from 2002, Bruns and Gubeladze conjectured that graded algebra retracts of polytopal algebras over a field $k$ are again polytopal algebras. Motivated by this conjecture, we prove that graded algebra retracts of Stanley-Reisner rings over a field $k$ are again Stanley-Reisner rings. Extending this result further, we give partial evidence for a conjecture saying that monomial quotients of standard graded polynomial rings over $k$ descend along graded algebra retracts.
Submission history
From: Hop Nguyen [view email][v1] Thu, 17 Jan 2013 02:16:27 UTC (19 KB)
[v2] Sat, 14 Dec 2013 17:16:01 UTC (20 KB)
Current browse context:
math.AC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.