Mathematics > Analysis of PDEs
[Submitted on 21 Jan 2013 (v1), last revised 14 May 2013 (this version, v2)]
Title:Stability estimates for the lowest eigenvalue of a Schrödinger operator
View PDFAbstract:There is a family of potentials that minimize the lowest eigenvalue of a Schrödinger eigenvalue under the constraint of a given L^p norm of the potential. We give effective estimates for the amount by which the eigenvalue increases when the potential is not one of these optimal potentials. Our results are analogous to those for the isoperimetric problem and the Sobolev inequality. We also prove a stability estimate for Hölder's inequality, which we believe to be new.
Submission history
From: Rupert Frank [view email][v1] Mon, 21 Jan 2013 22:49:23 UTC (18 KB)
[v2] Tue, 14 May 2013 19:32:25 UTC (18 KB)
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.