High Energy Physics - Theory
[Submitted on 2 Apr 2013 (v1), last revised 23 Apr 2013 (this version, v2)]
Title:On Three Dimensional Quiver Gauge Theories and Integrability
View PDFAbstract:In this work we compare different descriptions of the space of vacua of certain three dimensional N=4 superconformal field theories, compactified on a circle and mass-deformed to N=2 in a canonical way. The original N=4 theories are known to admit two distinct mirror descriptions as linear quiver gauge theories, and many more descriptions which involve the compactification on a segment of four-dimensional N=4 super Yang-Mills theory. Each description gives a distinct presentation of the moduli space of vacua. Our main result is to establish the precise dictionary between these presentations. We also study the relationship between this gauge theory problem and integrable systems. The space of vacua in the linear quiver gauge theory description is related by Nekrasov-Shatashvili duality to the eigenvalues of quantum integrable spin chain Hamiltonians. The space of vacua in the four-dimensional gauge theory description is related to the solution of certain integrable classical many-body problems. Thus we obtain numerous dualities between these integrable models.
Submission history
From: Peter Koroteev [view email][v1] Tue, 2 Apr 2013 20:06:17 UTC (678 KB)
[v2] Tue, 23 Apr 2013 17:33:32 UTC (677 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.