General Relativity and Quantum Cosmology
[Submitted on 19 Apr 2013 (v1), last revised 27 Jun 2013 (this version, v2)]
Title:Extensions of Lorentzian spacetime geometry: From Finsler to Cartan and vice versa
View PDFAbstract:We briefly review two recently developed extensions of the Lorentzian geometry of spacetime and prove that they are in fact closely related. The first is the concept of observer space, which generalizes the space of Lorentzian observers, i.e., future unit timelike vectors, using Cartan geometry. The second is the concept of Finsler spacetimes, which generalizes the Lorentzian metric of general relativity to an observer-dependent Finsler metric. We show that every Finsler spacetime possesses a well-defined observer space that can naturally be equipped with a Cartan geometry. Conversely, we derive conditions under which a Cartan geometry on observer space gives rise to a Finsler spacetime. We further show that these two constructions complement each other. We finally apply our constructions to two gravity theories, MacDowell-Mansouri gravity on observer space and Finsler gravity, and translate their actions from one geometry to the other.
Submission history
From: Manuel Hohmann [view email][v1] Fri, 19 Apr 2013 14:38:33 UTC (25 KB)
[v2] Thu, 27 Jun 2013 05:55:03 UTC (26 KB)
Current browse context:
gr-qc
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.