Quantum Physics
[Submitted on 19 Apr 2013]
Title:Diffraction in Time: An Exactly Solvable Model
View PDFAbstract:In the recent years, mater-wave interferometry has attracted growing attention due to its unique suitability for high-precision measurements and study of fundamental aspects of quantum theory. Diffraction and interference of matter waves can be observed not only at a spatial aperture (such as a screen edge, slit, or grating), but also at a time-domain aperture (such as an absorbing barrier, or "shutter", that is being periodically switched on and off). The wave phenomenon of the latter type is commonly referred to as "diffraction in time". Here, we introduce a versatile, exactly solvable model of diffraction in time. It describes time-evolution of an arbitrary initial quantum state in the presence of a time-dependent absorbing barrier, governed by an arbitrary aperture function. Our results enable a quantitative description of diffraction and interference patterns in a large variety of setups, and may be used to devise new diffraction and interference experiments with atoms and molecules.
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.