Quantum Physics
[Submitted on 21 Apr 2013 (v1), last revised 12 Feb 2014 (this version, v2)]
Title:Graph isomorphism and adiabatic quantum computing
View PDFAbstract:In the Graph Isomorphism problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G into G'. If yes, then G and G' are said to be isomorphic; otherwise they are non-isomorphic. The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. In this paper we present a quantum algorithm that solves arbitrary instances of GI and can also determine all automorphisms of a given graph. We show how the GI problem can be converted to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. We numerically simulate the algorithm's quantum dynamics and show that it correctly: (i) distinguishes non-isomorphic graphs; (ii) recognizes isomorphic graphs; and (iii) finds all automorphisms of a given graph G. We then discuss the GI quantum algorithm's experimental implementation, and close by showing how it can be leveraged to give a quantum algorithm that solves arbitrary instances of the NP-Complete Sub-Graph Isomorphism problem.
Submission history
From: Frank Gaitan [view email][v1] Sun, 21 Apr 2013 18:09:17 UTC (23 KB)
[v2] Wed, 12 Feb 2014 20:01:59 UTC (54 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.