Mathematics > Statistics Theory
[Submitted on 29 Apr 2013 (v1), last revised 28 Jan 2014 (this version, v2)]
Title:Adaptive estimation under single-index constraint in a regression model
View PDFAbstract:The problem of adaptive multivariate function estimation in the single-index regression model with random design and weak assumptions on the noise is investigated. A novel estimation procedure that adapts simultaneously to the unknown index vector and the smoothness of the link function by selecting from a family of specific kernel estimators is proposed. We establish a pointwise oracle inequality which, in its turn, is used to judge the quality of estimating the entire function (``global'' oracle inequality). Both the results are applied to the problems of pointwise and global adaptive estimation over a collection of Hölder and Nikol'skii functional classes, respectively.
Submission history
From: Oleg Lepski [view email] [via VTEX proxy][v1] Mon, 29 Apr 2013 14:22:21 UTC (69 KB)
[v2] Tue, 28 Jan 2014 09:30:38 UTC (55 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.