High Energy Physics - Phenomenology
[Submitted on 16 May 2013 (v1), last revised 20 Aug 2013 (this version, v2)]
Title:Out-of-Equilibrium Chiral Magnetic Effect at Strong Coupling
View PDFAbstract:We study the charge transports originating from triangle anomaly in out-of-equilibrium conditions in the framework of AdS/CFT correspondence at strong coupling, to gain useful insights on possible charge separation effects that may happen in the very early stages of heavy-ion collisions. We first construct a gravity background of a homogeneous mass shell with a finite (axial) charge density gravitationally collapsing to a charged blackhole, which serves as a dual model for out-of-equilibrium charged plasma undergoing thermalization. We find that a finite charge density in the plasma slows down the thermalization. We then study the out-of-equilibrium properties of Chiral Magnetic Effect and Chiral Magnetic Wave in this background. As the medium thermalizes, the magnitude of chiral magnetic conductivity and the response time delay grow. We find a dynamical peak in the spectral function of retarded current correlator, which we identify as an out-of-equilibrium chiral magnetic wave. The group velocity of the out-of-equilibrium chiral magnetic wave is shown to receive a dominant contribution from a non-equilibrium effect, making the wave moving much faster than in the equilibrium, which may enhance the charge transports via triangle anomaly in the early stage of heavy-ion collisions.
Submission history
From: Shu Lin [view email][v1] Thu, 16 May 2013 22:45:30 UTC (1,290 KB)
[v2] Tue, 20 Aug 2013 03:26:34 UTC (1,249 KB)
Current browse context:
hep-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.