Computer Science > Information Theory
[Submitted on 23 May 2013]
Title:Tight Upper and Lower Bounds to the Information Rate of the Phase Noise Channel
View PDFAbstract:Numerical upper and lower bounds to the information rate transferred through the additive white Gaussian noise channel affected by discrete-time multiplicative autoregressive moving-average (ARMA) phase noise are proposed in the paper. The state space of the ARMA model being multidimensional, the problem cannot be approached by the conventional trellis-based methods that assume a first-order model for phase noise and quantization of the phase space, because the number of state of the trellis would be enormous. The proposed lower and upper bounds are based on particle filtering and Kalman filtering. Simulation results show that the upper and lower bounds are so close to each other that we can claim of having numerically computed the actual information rate of the multiplicative ARMA phase noise channel, at least in the cases studied in the paper. Moreover, the lower bound, which is virtually capacity-achieving, is obtained by demodulation of the incoming signal based on a Kalman filter aided by past data. Thus we can claim of having found the virtually optimal demodulator for the multiplicative phase noise channel, at least for the cases considered in the paper.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.