Computer Science > Information Theory
[Submitted on 16 Sep 2013 (v1), last revised 25 Mar 2014 (this version, v2)]
Title:A new design criterion for spherically-shaped division algebra-based space-time codes
View PDFAbstract:This work considers normalized inverse determinant sums as a tool for analyzing the performance of division algebra based space-time codes for multiple antenna wireless systems. A general union bound based code design criterion is obtained as a main result. In our previous work, the behavior of inverse determinant sums was analyzed using point counting techniques for Lie groups; it was shown that the asymptotic growth exponents of these sums correctly describe the diversity-multiplexing gain trade-off of the space-time code for some multiplexing gain ranges. This paper focuses on the constant terms of the inverse determinant sums, which capture the coding gain behavior. Pursuing the Lie group approach, a tighter asymptotic bound is derived, allowing to compute the constant terms for several classes of space-time codes appearing in the literature. The resulting design criterion suggests that the performance of division algebra based codes depends on several fundamental algebraic invariants of the underlying algebra.
Submission history
From: Laura Luzzi [view email][v1] Mon, 16 Sep 2013 11:15:34 UTC (27 KB)
[v2] Tue, 25 Mar 2014 09:15:07 UTC (26 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.