Quantum Physics
[Submitted on 19 Sep 2013 (v1), last revised 6 Feb 2023 (this version, v3)]
Title:Quantum phase-space representation for curved configuration spaces
View PDFAbstract:We extend the Wigner-Weyl-Moyal phase-space formulation of quantum mechanics to general curved configuration spaces. The underlying phase space is based on the chosen coordinates of the manifold and their canonically conjugate momenta. The resulting Wigner function displays the axioms of a quasiprobability distribution, and any Weyl-ordered operator gets associated with the corresponding phase-space function, even in the absence of continuous symmetries. The corresponding quantum Liouville equation reduces to the classical curved space Liouville equation in the semiclassical limit. We demonstrate the formalism for a point particle moving on two-dimensional manifolds, such as a paraboloid or the surface of a sphere. The latter clarifies the treatment of compact coordinate spaces as well as the relation of the presented phase-space representation to symmetry groups of the configuration space.
Submission history
From: Clemens Gneiting [view email][v1] Thu, 19 Sep 2013 15:22:33 UTC (135 KB)
[v2] Thu, 30 Jan 2014 17:56:12 UTC (258 KB)
[v3] Mon, 6 Feb 2023 05:55:47 UTC (259 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.