Mathematics > Probability
[Submitted on 21 Sep 2013 (v1), last revised 8 Feb 2014 (this version, v2)]
Title:Strong uniqueness for stochastic evolution equations with unbounded measurable drift term
View PDFAbstract:We consider stochastic evolution equations in Hilbert spaces with merely measurable and locally bounded drift term $B$ and cylindrical Wiener noise. We prove pathwise (hence strong) uniqueness in the class of global solutions. This paper extends our previous paper (Da Prato, Flandoli, Priola and M. Rockner, Annals of Prob., published online in 2012) which generalized Veretennikov's fundamental result to infinite dimensions assuming boundedness of the drift term. As in our previous paper pathwise uniqueness holds for a large class, but not for every initial condition. We also include an application of our result to prove existence of strong solutions when the drift $B$ is only measurable, locally bounded and grows more than linearly.
Submission history
From: Enrico Priola [view email][v1] Sat, 21 Sep 2013 17:47:02 UTC (22 KB)
[v2] Sat, 8 Feb 2014 10:27:27 UTC (25 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.