Mathematics > Optimization and Control
[Submitted on 22 Sep 2013 (v1), last revised 11 Nov 2014 (this version, v2)]
Title:Data Assimilation for hyperbolic conservation laws. A Luenberger observer approach based on a kinetic description
View PDFAbstract:Developing robust data assimilation methods for hyperbolic conservation laws is a challenging subject. Those PDEs indeed show no dissipation effects and the input of additional information in the model equations may introduce errors that propagate and create shocks. We propose a new approach based on the kinetic description of the conservation law. A kinetic equation is a first order partial differential equation in which the advection velocity is a free variable. In certain cases, it is possible to prove that the nonlinear conservation law is equivalent to a linear kinetic equation. Hence, data assimilation is carried out at the kinetic level, using a Luenberger observer also known as the nudging strategy in data assimilation. Assimilation then resumes to the handling of a BGK type equation. The advantage of this framework is that we deal with a single "linear" equation instead of a nonlinear system and it is easy to recover the macroscopic variables. The study is divided into several steps and essentially based on functional analysis techniques. First we prove the convergence of the model towards the data in case of complete observations in space and time. Second, we analyze the case of partial and noisy observations. To conclude, we validate our method with numerical results on Burgers equation and emphasize the advantages of this method with the more complex Saint-Venant system.
Submission history
From: Anne-Celine Boulanger [view email][v1] Sun, 22 Sep 2013 16:11:36 UTC (4,461 KB)
[v2] Tue, 11 Nov 2014 14:58:16 UTC (4,473 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.