Quantum Physics
[Submitted on 14 Nov 2013 (v1), last revised 6 Sep 2014 (this version, v3)]
Title:Quantum synchronizable codes from finite geometries
View PDFAbstract:Quantum synchronizable error-correcting codes are special quantum error-correcting codes that are designed to correct both the effect of quantum noise on qubits and misalignment in block synchronization. It is known that in principle such a code can be constructed through a combination of a classical linear code and its subcode if the two are both cyclic and dual-containing. However, finding such classical codes that lead to promising quantum synchronizable error-correcting codes is not a trivial task. In fact, although there are two families of classical codes that are proved to produce quantum synchronizable codes with good minimum distances and highest possible tolerance against misalignment, their code lengths have been restricted to primes and Mersenne numbers. In this paper, examining the incidence vectors of projective spaces over the finite fields of characteristic $2$, we give quantum synchronizable codes from cyclic codes whose lengths are not primes or Mersenne numbers. These projective geometric codes achieve good performance in quantum error correction and possess the best possible ability to recover synchronization, thereby enriching the variety of good quantum synchronizable codes. We also extend the current knowledge of cyclic codes in classical coding theory by explicitly giving generator polynomials of the finite geometric codes and completely characterizing the minimum weight nonzero codewords. In addition to the codes based on projective spaces, we carry out a similar analysis on the well-known cyclic codes from Euclidean spaces that are known to be majority logic decodable and determine their exact minimum distances.
Submission history
From: Yuichiro Fujiwara [view email][v1] Thu, 14 Nov 2013 08:41:30 UTC (17 KB)
[v2] Sun, 15 Dec 2013 13:34:48 UTC (16 KB)
[v3] Sat, 6 Sep 2014 07:19:00 UTC (19 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.