Quantitative Finance > Portfolio Management
[Submitted on 24 Nov 2013 (v1), last revised 14 Oct 2014 (this version, v3)]
Title:Optimal Strategies for a Long-Term Static Investor
View PDFAbstract:The optimal strategies for a long-term static investor are studied. Given a portfolio of a stock and a bond, we derive the optimal allocation of the capitols to maximize the expected long-term growth rate of a utility function of the wealth. When the bond has constant interest rate, three models for the underlying stock price processes are studied: Heston model, 3/2 model and jump diffusion model. We also study the optimal strategies for a portfolio in which the stock price process follows a Black-Scholes model and the bond process has a Vasicek interest rate that is correlated to the stock price.
Submission history
From: Lingjiong Zhu [view email][v1] Sun, 24 Nov 2013 22:27:44 UTC (10 KB)
[v2] Sat, 24 May 2014 23:21:00 UTC (10 KB)
[v3] Tue, 14 Oct 2014 22:38:29 UTC (10 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.