Mathematics > Geometric Topology
[Submitted on 7 Jan 2014]
Title:Geometric spectra and commensurability
View PDFAbstract:The work of Reid, Chinburg--Hamilton--Long--Reid, Prasad--Rapinchuk, and the author with Reid have demonstrated that geodesics or totally geodesic submanifolds can sometimes be used to determine the commensurability class of an arithmetic manifold. The main results of this article show that generalizations of these results to other arithmetic manifolds will require a wide range of data. Specifically, we prove that certain incommensurable arithmetic manifolds arising from the semisimple Lie groups of the form $(\SL(d,\R))^r \times (\SL(d,\C))^s$ have the same commensurability classes of totally geodesic submanifolds coming from a fixed field. This construction is algebraic and shows the failure of determining, in general, a central simple algebra from subalgebras over a fixed field. This, in turn, can be viewed in terms of forms of $\SL_d$ and the failure of determining the form via certain classes of algebraic subgroups.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.