Nonlinear Sciences > Adaptation and Self-Organizing Systems
[Submitted on 9 Jan 2014 (v1), last revised 8 Jan 2016 (this version, v2)]
Title:Variance-based control of regime shifts: bistability and oscillations
View PDFAbstract: A variety of real world and experimental systems can display a drastic regime shift, as the evolution in one its paramaters crosses a threshold value. Assimilation of such a transition with a bifurcation has allowed to identify so called "early warning signals", at the level of the time series generated by the system underscope. The literature in early warning detection methods is currently expanding and their potential for practical applicability is being discussed in different contexts. In this work, we elaborate on the use of the variance of a system variable, which constitutes the simplest early warning indicator, to gain control on the long-term dynamics of the system, while extending an exploitation phase. In particular, we address the cases of the cusp and Hopf normal forms, as prototypical examples of bistability and oscillations. Our results provide insights on the interplay between the time-scale for the system observation, the degree of sensitivity of the control feedback and the intensity of the random perturbations, in shaping the long-term control efficiency.
Submission history
From: Anselmo García Cantú Ros [view email][v1] Thu, 9 Jan 2014 15:48:20 UTC (900 KB)
[v2] Fri, 8 Jan 2016 17:15:54 UTC (900 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.