Computer Science > Multimedia
[Submitted on 15 Jan 2014]
Title:Wireless Video Multicast with Cooperative and Incremental Transmission of Parity Packets
View PDFAbstract:In this paper, a cooperative multicast scheme that uses Randomized Distributed Space Time Codes (R-DSTC), along with packet level Forward Error Correction (FEC), is studied. Instead of sending source packets and/or parity packets through two hops using R-DSTC as proposed in our prior work, the new scheme delivers both source packets and parity packets using only one hop. After the source station (access point, AP) first sends all the source packets, the AP as well as all nodes that have received all source packets together send the parity packets using R-DSTC. As more parity packets are transmitted, more nodes can recover all source packets and join the parity packet transmission. The process continues until all nodes acknowledge the receipt of enough packets for recovering the source packets. For each given node distribution, the optimum transmission rates for source and parity packets are determined such that the video rate that can be sustained at all nodes is maximized. This new scheme can support significantly higher video rates, and correspondingly higher PSNR of decoded video, than the prior approaches. Three suboptimal approaches, which do not require full information about user distribution or the feedback, and hence are more feasible in practice are also presented. The proposed suboptimal scheme with only the node count information and without feedback still outperforms our prior approach that assumes full channel information and no feedback.
Current browse context:
cs.MM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.