Mathematics > Combinatorics
[Submitted on 16 Jan 2014 (v1), last revised 22 Oct 2014 (this version, v2)]
Title:Proof of the $1$-factorization and Hamilton Decomposition Conjectures
View PDFAbstract:In this paper we prove the following results (via a unified approach) for all sufficiently large $n$:
(i) [$1$-factorization conjecture] Suppose that $n$ is even and $D\geq 2\lceil n/4\rceil -1$. Then every $D$-regular graph $G$ on $n$ vertices has a decomposition into perfect matchings. Equivalently, $\chi'(G)=D$.
(ii) [Hamilton decomposition conjecture] Suppose that $D \ge \lfloor n/2 \rfloor $. Then every $D$-regular graph $G$ on $n$ vertices has a decomposition into Hamilton cycles and at most one perfect matching.
(iii) [Optimal packings of Hamilton cycles] Suppose that $G$ is a graph on $n$ vertices with minimum degree $\delta\ge n/2$. Then $G$ contains at least ${\rm reg}_{\rm even}(n,\delta)/2 \ge (n-2)/8$ edge-disjoint Hamilton cycles. Here $\text{reg}_{\text{even}}(n,\delta)$ denotes the degree of the largest even-regular spanning subgraph one can guarantee in a graph on $n$ vertices with minimum degree $\delta$.
(i) was first explicitly stated by Chetwynd and Hilton. (ii) and the special case $\delta= \lceil n/2 \rceil$ of (iii) answer questions of Nash-Williams from 1970. All of the above bounds are best possible.
Submission history
From: Allan Lo [view email][v1] Thu, 16 Jan 2014 20:44:15 UTC (77 KB)
[v2] Wed, 22 Oct 2014 15:55:32 UTC (231 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.