Mathematics > Algebraic Geometry
[Submitted on 22 Jan 2014 (v1), last revised 25 Nov 2014 (this version, v2)]
Title:Algebraic and combinatorial rank of divisors on finite graphs
View PDFAbstract:We study the algebraic rank of a divisor on a graph, an invariant defined using divisors on algebraic curves dual to the graph. We prove it satisfies the Riemann-Roch formula, a specialization property, and the Clifford inequality. We prove that it is at most equal to the (usual) combinatorial rank, and that equality holds in many cases, though not in general.
Submission history
From: Lucia Caporaso [view email][v1] Wed, 22 Jan 2014 16:50:40 UTC (33 KB)
[v2] Tue, 25 Nov 2014 15:19:58 UTC (33 KB)
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.