Mathematics > Combinatorics
[Submitted on 24 Jan 2014 (v1), last revised 16 Mar 2015 (this version, v3)]
Title:Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights
View PDFAbstract:It is shown that the residue code of a self-dual $\mathbb{Z}_4$-code of length $24k$ (resp.\ $24k+8$) and minimum Lee weight $8k+4 \text{ or }8k+2$ (resp.\ $8k+8 \text{ or }8k+6$) is a binary extremal doubly even self-dual code for every positive integer $k$. A number of new self-dual $\mathbb{Z}_4$-codes of length $24$ and minimum Lee weight $10$ are constructed using the above characterization. These codes are Type I $\mathbb{Z}_4$-codes having the largest minimum Lee weight and the largest Euclidean weight among all Type I $\mathbb{Z}_4$-codes of that length. In addition, new extremal Type II $\mathbb{Z}_4$-codes of length $56$ are found.
Submission history
From: Masaaki Harada [view email][v1] Fri, 24 Jan 2014 03:48:41 UTC (15 KB)
[v2] Wed, 26 Mar 2014 02:55:22 UTC (17 KB)
[v3] Mon, 16 Mar 2015 10:20:26 UTC (17 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.