Computer Science > Robotics
[Submitted on 27 Jan 2014 (v1), last revised 27 Apr 2015 (this version, v3)]
Title:Adaptive Visual Tracking for Robotic Systems Without Image-Space Velocity Measurement
View PDFAbstract:In this paper, we investigate the visual tracking problem for robotic systems without image-space velocity measurement, simultaneously taking into account the uncertainties of the camera model and the manipulator kinematics and dynamics. We propose a new image-space observer that exploits the image-space velocity information contained in the unknown kinematics, upon which, we design an adaptive controller without using the image-space velocity signal where the adaptations of the depth-rate-independent kinematic parameter and depth parameter are driven by both the image-space tracking errors and observation errors. The major superiority of the proposed observer-based adaptive controller lies in its simplicity and the separation of the handling of multiple uncertainties in visually servoed robotic systems, thus avoiding the overparametrization problem of the existing work. Using Lyapunov analysis, we demonstrate that the image-space tracking errors converge to zero asymptotically. The performance of the proposed adaptive control scheme is illustrated by a numerical simulation.
Submission history
From: Hanlei Wang [view email][v1] Mon, 27 Jan 2014 15:56:28 UTC (57 KB)
[v2] Sat, 12 Apr 2014 11:22:39 UTC (49 KB)
[v3] Mon, 27 Apr 2015 18:42:55 UTC (454 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.