Mathematics > Group Theory
[Submitted on 8 Feb 2014]
Title:The $R_{\infty} property for abelian groups
View PDFAbstract:It is well known there is no finitely generated abelian group which has the $R_\infty$ property. We will show that also many non-finitely generated abelian groups do not have the $R_\infty$ property, but this does not hold for all of them. In fact we construct an uncountable number of infinite countable abelian groups which do have the $R_{\infty}$ property. We also construct an abelian group such that the cardinality of the Reidemeister classes is uncountable for any automorphism of that group. 8 pages, no figures
Submission history
From: Daciberg Goncalves Lima [view email][v1] Sat, 8 Feb 2014 16:09:22 UTC (9 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.