Mathematics > Algebraic Topology
[Submitted on 8 Feb 2014 (v1), last revised 18 Apr 2014 (this version, v2)]
Title:The Lusternik-Schnirelmann category of metric spaces
View PDFAbstract:We extend the theory of the Lusternik-Schnirelmann category to general metric spaces by means of covers by arbitrary subsets. We also generalize the definition of the strict category weight. We show that if the Bockstein homomorphism on a metric space is non-zero, then its LS-category is at least two, and use this to compute the category of Pontryagin surfaces. Additionally, we prove that a Polish space with LS-category $n$ can be presented as the inverse limit of ANR spaces of category at most $n$.
Submission history
From: Tulsi Srinivasan [view email][v1] Sat, 8 Feb 2014 18:06:26 UTC (12 KB)
[v2] Fri, 18 Apr 2014 16:55:49 UTC (12 KB)
Current browse context:
math.AT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.