Mathematics > Analysis of PDEs
[Submitted on 7 Mar 2014]
Title:Dissipative boundary conditions for nonlinear 1-D hyperbolic systems: sharp conditions through an approach via time-delay systems
View PDFAbstract:We analyse dissipative boundary conditions for nonlinear hyperbolic systems in one space dimension. We show that a previous known sufficient condition for exponential stability with respect to the C^1-norm is optimal. In particular a known weaker sufficient condition for exponential stability with respect to the H^2-norm is not sufficient for the exponential stability with respect to the C^1-norm. Hence, due to the nonlinearity, even in the case of classical solutions, the exponential stability depends strongly on the norm considered. We also give a new sufficient condition for the exponential stability with respect to the W^{2,p}-norm. The methods used are inspired from the theory of the linear time-delay systems and incorporate the characteristic method.
Submission history
From: Jean-Michel Coron [view email] [via CCSD proxy][v1] Fri, 7 Mar 2014 13:29:56 UTC (64 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.