Mathematics > Numerical Analysis
[Submitted on 15 Mar 2014 (v1), last revised 11 Jul 2014 (this version, v2)]
Title:Runge-Kutta Discontinuous Galerkin Method for Traffic Flow Model on Networks
View PDFAbstract:We propose a bound-preserving Runge-Kutta (RK) discontinuous Galerkin (DG) method as an efficient, effective and compact numerical approach for numerical simulation of traffic flow problems on networks, with arbitrary high order accuracy. Road networks are modeled by graphs, composed of a finite number of roads that meet at junctions. On each road, a scalar conservation law describes the dynamics, while coupling conditions are specified at junctions to define flow separation or convergence at the points where roads meet. We incorporate such coupling conditions in the RK DG framework, and apply an arbitrary high order bound preserving limiter to the RK DG method to preserve the physical bounds on the network solutions (car density). We showcase the proposed algorithm on several benchmark test cases from the literature, as well as several new challenging examples with rich solution structures. Modeling and simulation of Cauchy problems for traffic flows on networks is notorious for lack of uniqueness or (Lipschitz) continuous dependence. The discontinuous Galerkin method proposed here deals elegantly with these problems, and is perhaps the only realistic and efficient high-order method for network problems.
Submission history
From: Tan Ren [view email][v1] Sat, 15 Mar 2014 03:46:13 UTC (602 KB)
[v2] Fri, 11 Jul 2014 16:34:22 UTC (853 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.