Mathematics > Algebraic Geometry
[Submitted on 17 Mar 2014 (v1), last revised 9 Jun 2015 (this version, v2)]
Title:Kähler manifolds of semi-negative holomorphic sectional curvature
View PDFAbstract:In an earlier work, we investigated some consequences of the existence of a Kähler metric of negative holomorphic sectional curvature on a projective manifold. In the present work, we extend our results to the case of semi-negative (i.e., non-positive) holomorphic sectional curvature. In doing so, we define a new invariant that records the largest codimension of maximal subspaces in the tangent spaces on which the holomorphic sectional curvature vanishes. Using this invariant, we establish lower bounds for the nef dimension and, under certain additional assumptions, for the Kodaira dimension of the manifold. In dimension two, a precise structure theorem is obtained.
Submission history
From: Gordon Heier [view email][v1] Mon, 17 Mar 2014 18:48:29 UTC (20 KB)
[v2] Tue, 9 Jun 2015 15:41:53 UTC (22 KB)
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.