Mathematics > Geometric Topology
[Submitted on 1 Apr 2014]
Title:The strong AJ conjecture for cables of torus knots
View PDFAbstract:The AJ conjecture, formulated by Garoufalidis, relates the A-polynomial and the colored Jones polynomial of a knot in the 3-sphere. It has been confirmed for all torus knots, some classes of two-bridge knots and pretzel knots, and most cabled knots over torus knots. The strong AJ conjecture, formulated by Sikora, relates the A-ideal and the colored Jones polynomial of a knot. It was confirmed for all torus knots. In this paper we confirm the strong AJ conjecture for most cabled knots over torus knots.
Current browse context:
math.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.