Computer Science > Information Theory
[Submitted on 2 Apr 2014 (v1), last revised 25 Aug 2014 (this version, v2)]
Title:Conjugate Gradient-based Soft-Output Detection and Precoding in Massive MIMO Systems
View PDFAbstract:Massive multiple-input multiple-output (MIMO) promises improved spectral efficiency, coverage, and range, compared to conventional (small-scale) MIMO wireless systems. Unfortunately, these benefits come at the cost of significantly increased computational complexity, especially for systems with realistic antenna configurations. To reduce the complexity of data detection (in the uplink) and precoding (in the downlink) in massive MIMO systems, we propose to use conjugate gradient (CG) methods. While precoding using CG is rather straightforward, soft-output minimum mean-square error (MMSE) detection requires the computation of the post-equalization signal-to-interference-and-noise-ratio (SINR). To enable CG for soft-output detection, we propose a novel way of computing the SINR directly within the CG algorithm at low complexity. We investigate the performance/complexity trade-offs associated with CG-based soft-output detection and precoding, and we compare it to exact and approximate methods. Our results reveal that the proposed method outperforms existing algorithms for massive MIMO systems with realistic antenna configurations.
Submission history
From: Christoph Studer [view email][v1] Wed, 2 Apr 2014 00:35:03 UTC (94 KB)
[v2] Mon, 25 Aug 2014 15:27:07 UTC (94 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.