Mathematics > Combinatorics
[Submitted on 1 May 2014]
Title:Perfect Packings in Quasirandom Hypergraphs II
View PDFAbstract:For each of the notions of hypergraph quasirandomness that have been studied, we identify a large class of hypergraphs F so that every quasirandom hypergraph H admits a perfect F-packing. An informal statement of a special case of our general result for 3-uniform hypergraphs is as follows. Fix an integer r >= 4 and 0<p<1. Suppose that H is an n-vertex triple system with r|n and the following two properties:
* for every graph G with V(G)=V(H), at least p proportion of the triangles in G are also edges of H,
* for every vertex x of H, the link graph of x is a quasirandom graph with density at least p.
Then H has a perfect $K_r^{(3)}$-packing. Moreover, we show that neither hypotheses above can be weakened, so in this sense our result is tight. A similar conclusion for this special case can be proved by Keevash's hypergraph blowup lemma, with a slightly stronger hypothesis on H.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.