Condensed Matter > Strongly Correlated Electrons
[Submitted on 6 May 2014]
Title:Accurate variational electronic structure calculations with the density matrix renormalization group
View PDFAbstract:During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. The underlying matrix product state (MPS) ansatz is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS controls the size of the corner of the many-body Hilbert space that can be reached.
Whereas the MPS ansatz will only yield an efficient description for noncritical one-dimensional systems, it can still be used as a variational ansatz for other finite-size systems. Rather large virtual dimensions are then required. The two most important aspects to reduce the corresponding computational cost are a proper choice and ordering of the active space orbitals, and the exploitation of the symmetry group of the Hamiltonian. By taking care of both aspects, DMRG becomes an efficient replacement for exact diagonalization in quantum chemistry.
DMRG and Hartree-Fock theory have an analogous structure. The former can be interpreted as a self-consistent mean-field theory in the DMRG lattice sites, and the latter in the particles. It is possible to build upon this analogy to introduce post-DMRG methods. Based on an approximate MPS, these methods provide improved ansätze for the ground state, as well as for excitations. Exponentiation of the single-particle (single-site) excitations for a Slater determinant (an MPS with open boundary conditions) leads to the Thouless theorem for Hartree-Fock theory (DMRG), an explicit nonredundant parameterization of the entire manifold of Slater determinants (MPS wavefunctions). This gives rise to the configuration interaction expansion for DMRG. The Hubbard-Stratonovich transformation lies at the basis of auxiliary field quantum Monte Carlo for Slater determinants. An analogous transformation for spin-lattice Hamiltonians allows to formulate a promising variant for MPSs.
Submission history
From: Sebastian Wouters [view email][v1] Tue, 6 May 2014 11:02:47 UTC (5,656 KB)
Current browse context:
cond-mat.str-el
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.