Condensed Matter > Statistical Mechanics
[Submitted on 6 May 2014]
Title:Equitable random graphs
View PDFAbstract:Random graph models have played a dominant role in the theoretical study of networked systems. The Poisson random graph of Erdos and Renyi, in particular, as well as the so-called configuration model, have served as the starting point for numerous calculations. In this paper we describe another large class of random graph models, which we call equitable random graphs and which are flexible enough to represent networks with diverse degree distributions and many nontrivial types of structure, including community structure, bipartite structure, degree correlations, stratification, and others, yet are exactly solvable for a wide range of properties in the limit of large graph size, including percolation properties, complete spectral density, and the behavior of homogeneous dynamical systems, such as coupled oscillators or epidemic models.
Current browse context:
cond-mat.stat-mech
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.