Mathematics > Optimization and Control
[Submitted on 14 May 2014]
Title:Weakly Coupled Dynamic Program: Information and Lagrangian Relaxations
View PDFAbstract:"Weakly coupled dynamic program" describes a broad class of stochastic optimization problems in which multiple controlled stochastic processes evolve independently but subject to a set of linking constraints imposed on the controls. One feature of the weakly coupled dynamic program is that it decouples into lower-dimensional dynamic programs by dualizing the linking constraint via the Lagrangian relaxation, which also yields a bound on the optimal value of the original dynamic program. Together with the Lagrangian bound, we utilize the information relaxation approach that relaxes the non-anticipative constraint on the controls to obtain a tighter dual bound. We also investigate other combinations of the relaxations and place the resulting bounds in order. To tackle large-scale problems, we further propose a computationally tractable method based on information relaxation, and provide insightful interpretation and performance guarantee. We implement our method and demonstrate its use through two numerical examples.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.