Mathematics > Probability
[Submitted on 25 May 2014 (v1), last revised 2 Oct 2014 (this version, v2)]
Title:On the relationship between a quantum Markov semigroup and its representation via linear stochastic Schroedinger equations
View PDFAbstract:A quantum Markov semigroup can be represented via classical diffusion processes solving a stochastic Schrödinger equation. In this paper we first prove that a quantum Markov semigroup is irreducible if and only if classical diffusion processes are total in the Hilbert space of the system. Then we study the relationship between irreducibility of a quantum Markov semigroup and properties of these diffusions such as accessibility, the Lie algebra rank condition, and irreducibility. We prove that all these properties are, in general, weaker than irreducibility of the quantum Markov semigroup, nevertheless, they are equivalent for some important classes of semigroups.
Submission history
From: Franco Fagnola [view email][v1] Sun, 25 May 2014 10:45:05 UTC (14 KB)
[v2] Thu, 2 Oct 2014 14:33:58 UTC (14 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.