Mathematics > Statistics Theory
[Submitted on 26 May 2014]
Title:Bayesian variable selection with shrinking and diffusing priors
View PDFAbstract:We consider a Bayesian approach to variable selection in the presence of high dimensional covariates based on a hierarchical model that places prior distributions on the regression coefficients as well as on the model space. We adopt the well-known spike and slab Gaussian priors with a distinct feature, that is, the prior variances depend on the sample size through which appropriate shrinkage can be achieved. We show the strong selection consistency of the proposed method in the sense that the posterior probability of the true model converges to one even when the number of covariates grows nearly exponentially with the sample size. This is arguably the strongest selection consistency result that has been available in the Bayesian variable selection literature; yet the proposed method can be carried out through posterior sampling with a simple Gibbs sampler. Furthermore, we argue that the proposed method is asymptotically similar to model selection with the $L_0$ penalty. We also demonstrate through empirical work the fine performance of the proposed approach relative to some state of the art alternatives.
Submission history
From: Naveen Naidu Narisetty [view email] [via VTEX proxy][v1] Mon, 26 May 2014 11:24:26 UTC (154 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.