Mathematics > Geometric Topology
[Submitted on 9 Jun 2014 (v1), last revised 29 Dec 2018 (this version, v3)]
Title:The classification of 2-connected 7-manifolds
View PDFAbstract:We present a classification theorem for closed smooth spin 2-connected 7-manifolds M. This builds on the almost-smooth classification from the first author's thesis. The main additional ingredient is an extension of the Eells-Kuiper invariant for any closed spin 7-manifold, regardless of whether the spin characteristic class p_M in the fourth integral cohomology of M is torsion. In addition we determine the inertia group of 2-connected M - equivalently the number of oriented smooth structures on the underlying topological manifold - in terms of p_M and the torsion linking form.
Submission history
From: Diarmuid Crowley [view email][v1] Mon, 9 Jun 2014 15:52:56 UTC (68 KB)
[v2] Tue, 1 May 2018 11:42:48 UTC (74 KB)
[v3] Sat, 29 Dec 2018 10:33:12 UTC (67 KB)
Current browse context:
math.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.