Mathematics > Analysis of PDEs
[Submitted on 12 Jun 2014 (v1), last revised 8 Sep 2015 (this version, v3)]
Title:Asymptotic Stability of high-dimensional Zakharov-Kuznetsov solitons
View PDFAbstract:We prove that solitons (or solitary waves) of the Zakharov-Kuznetsov (ZK) equation, a physically relevant high dimensional generalization of the Korteweg-de Vries (KdV) equation appearing in Plasma Physics, and having mixed KdV and nonlinear Schrödinger (NLS) dynamics, are strongly asymptotically stable in the energy space in the physical region. We also prove that the sum of well-arranged solitons is stable in the same space. Orbital stability of ZK solitons is well-known since the work of de Bouard. Our proofs follow the ideas by Martel and Martel and Merle, applied for generalized KdV equations in one dimension. In particular, we extend to the high dimensional case several monotonicity properties for suitable half-portions of mass and energy; we also prove a new Liouville type property that characterizes ZK solitons, and a key Virial identity for the linear and nonlinear part of the ZK dynamics, obtained independently of the mixed KdV-NLS dynamics. This last Virial identity relies on a simple sign condition, which is numerically tested for the two and three dimensional cases, with no additional spectral assumptions required. Possible extensions to higher dimensions and different nonlinearities could be obtained after a suitable local well-posedness theory in the energy space, and the verification of a corresponding sign condition.
Submission history
From: Claudio Muñoz [view email][v1] Thu, 12 Jun 2014 11:36:45 UTC (325 KB)
[v2] Thu, 3 Jul 2014 04:40:12 UTC (327 KB)
[v3] Tue, 8 Sep 2015 19:54:24 UTC (329 KB)
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.