Mathematics > Symplectic Geometry
[Submitted on 7 Jul 2014]
Title:On the Conley Conjecture for Reeb Flows
View PDFAbstract:In this paper we prove the existence of infinitely many closed Reeb orbits for a certain class of contact manifolds. This result can be viewed as a contact analogue of the Hamiltonian Conley conjecture. The manifolds for which the contact Conley conjecture is established are the pre-quantization circle bundles with aspherical base. As an application, we prove that for a surface of genus at least two with a non-vanishing magnetic field, the twisted geodesic flow has infinitely many periodic orbits on every low energy level.
Current browse context:
math.SG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.