Computer Science > Information Theory
[Submitted on 10 Jul 2014 (v1), last revised 13 Nov 2015 (this version, v3)]
Title:Mobility-Aware Uplink Interference Model for 5G Heterogeneous Networks
View PDFAbstract:To meet the surging demand for throughput, 5G cellular networks need to be more heterogeneous and much denser, by deploying more and more small cells. In particular, the number of users in each small cell can change dramatically due to users' mobility, resulting in random and time varying uplink interference. This paper considers the uplink interference in a 5G heterogeneous network which is jointly covered by one macro cell and several small cells. Based on the Lévy flight moving model, a mobility-aware interference model is proposed to characterize the uplink interference from macro cell users to small cell users. In this model, the total uplink interference is characterized by its moment generating function, for both closed subscriber group (CSG) and open subscriber group (CSG) femto cells. In addition, the proposed interference model is a function of basic step length, which is a key velocity parameter of Lévy flights. It is shown by both theoretical analysis and simulation results that the proposed interference model provides a flexible way of evaluating the system performance in terms of success probability and average rate.
Submission history
From: Yunquan Dong [view email][v1] Thu, 10 Jul 2014 11:26:59 UTC (2,759 KB)
[v2] Thu, 17 Jul 2014 01:13:56 UTC (2,759 KB)
[v3] Fri, 13 Nov 2015 09:21:34 UTC (2,925 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.