Mathematics > Number Theory
[Submitted on 20 Jul 2014]
Title:Additive properties of sequences of pseudo s-th powers
View PDFAbstract:In this paper, we study (random) sequences of pseudo s-th powers, as introduced by Erdös and Rényi in 1960. In 1975, Goguel proved that such a sequence is almost surely not an asymptotic basis of order s. Our first result asserts that it is however almost surely a basis of order s + x for any x > 0. We then study the s-fold sumset sA = A + ... + A (s times) and in particular the minimal size of an additive complement, that is a set B such that sA + B contains all large enough integers. With respect to this problem, we prove quite precise theorems which are tantamount to asserting that a threshold phenomenon occurs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.