Astrophysics > Earth and Planetary Astrophysics
[Submitted on 28 Jul 2014]
Title:Continuation and stability deduction of resonant periodic orbits in three dimensional systems
View PDFAbstract:In dynamical systems of few degrees of freedom, periodic solutions consist the backbone of the phase space and the determination and computation of their stability is crucial for understanding the global dynamics. In this paper we study the classical three body problem in three dimensions and use its dynamics to assess the long-term evolution of extrasolar systems. We compute periodic orbits, which correspond to exact resonant motion, and determine their linear stability. By computing maps of dynamical stability we show that stable periodic orbits are surrounded in phase space with regular motion even in systems with more than two degrees of freedom, while chaos is apparent close to unstable ones. Therefore, families of stable periodic orbits, indeed, consist backbones of the stability domains in phase space.
Submission history
From: Kyriaki Antoniadou [view email][v1] Mon, 28 Jul 2014 11:28:53 UTC (242 KB)
Current browse context:
astro-ph.EP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.